
The	Need	for	Well-Factored	Dynamic	
Parallel	Programming	Systems,		

and	Why	Charm++	is	a	Good	Choice	
Phil	Miller	

Advanced	Modeling	&	SimulaCon	(AMS)	Seminar	Series,		
NASA	Ames	Research	Center,	September	12,	2016	

(Over)DecomposiCon	

•  Decompose	the	work	units	&	data	units	into	
many	more	pieces	than	execuCon	units	
– Cores/Nodes/..	

•  Not	so	hard:	we	do	(over)	decomposiCon	
anyway	
– MulC-block	and	AMR	on	structured	meshes	
– Unstructured	mesh	parCCons	
– N-body	tree	code	‘leaves’	
– Blocked	linear	algebra	

2	

Task/Object	Placement	

•  Those	pieces	have	to	go	somewhere	
•  Naïve	reasons:	
– Matching	(range	of)	indices	
– Easy	to	compute	ID<->place	mapping	

•  Good	reasons:	(e.g.)	
– Load	balance	
– CommunicaCon	locality	on	core/node	
– CommunicaCon	locality	over	network	
– Workload	affinity	for	hardware	type	

Task/Object	Movement	

•  Is	the	chosen	placement	the	best	possible?	
•  Can	you	change	it?	
– Without	restarCng	the	applicaCon?	

•  Why?	
– Load	not	as	predicted	(or	assumed)	
– Load	changed	
– Hardware	performance	changed(?!)	
– Part	of	hardware	failed	

Asynchronous	ExecuCon	

•  Work	shouldn’t	have	to	‘wait	its	turn’	
•  Components	should	be	willing	to	share	
•  I.e.,	ComposiCon	of	independent	tasks	
– Steps	of	a	parallel	algorithm	
– MulC-module	and	mulC-physics	
– Using	all	hardware	resources,	all	the	Cme	

Missing	OpCmizaCons	

•  Second-order	placement	effects	
•  Load	balancing	frequency	
•  Dynamic	criCcal	paths	
•  Energy	usage	
•  Produc'vity	

Why	do	it	all	by	yourself,	in	every	app?	

InstanCaCons	of	(some	of)	these	ideas	

•  Charm++	
–  Including	AdapCve	MPI	

•  KAAPI	
•  HPX	
•  StarPU	
•  OmpSs	
•  ParSEC	
	

•  CnC	
•  Chapel	
•  X10	
•  Every	AMR	framework	
–  Especially	Uintah	

•  ProAcCve	
•  FG-MPI	
•  MPC	
	

9/13/16	 ICPP2013	 7	

Why	Charm++	
•  ApplicaCon	experience	

–  NAMD,	EpiSimdemics,	ChaNGa	
–  OpenAtom,	Fractography,	StochasCc	MIP,	Cloth	SimulaCon	

•  InteroperaCon	with	naCve	MPI	code	
–  Easy,	low	risk,	incremental	adopCon	

•  ProducCon-ready	development	
–  Portability	
–  Stability	
–  CompaCbility	

•  Rich,	Extensible	Ecosystem	
•  Comprehensive	feature	set	

Why	Charm++	
•  ApplicaCon	experience	

–  NAMD,	EpiSimdemics,	ChaNGa	
–  OpenAtom,	Fractography,	StochasCc	MIP,	Cloth	SimulaCon	

•  InteroperaCon	with	naCve	MPI	code	
–  Easy,	low	risk,	incremental	adopCon	

•  ProducCon-ready	development	
–  Portability	
–  Stability	
–  CompaCbility	

•  Rich,	Extensible	Ecosystem	
•  Comprehensive	feature	set	

NAMD:	Biomolecular	SimulaCons	

•  Long-term	collaboraCon	
(1994-now)	with		
K.	Schulten	

•  Over	70,000	users	
•  Scaled	to	top	US	
supercomputers	

•  2002	Gordon	Bell	award	
•  2012	Fernbach	award	

Science	cover	arCcle:	
DeterminaCon	of	HIV	capsid	structure	

10	

NAMD	strong	scaling	on	Titan	Cray	XK7,	Blue	Waters	Cray	XE6,	and	Mira	IBM	Blue	
Gene/Q	for	21M	and	224M	atom	benchmarks	

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Pe
rfo

rm
an

ce
 (n

s
pe

r d
ay

)

Number of Nodes

NAMD on Petascale Machines (2fs timestep with PME)

21M atoms

224M atoms

Titan XK7
Blue Waters XE6

Mira Blue Gene/Q

Time	Profile	of	ApoA1	on	Power7	PERCS	

2ms	total	

92,000	atom	system,	on	500+	nodes	(16k	cores)	

12	

A	snapshot	of	opCmizaCon	in	progress..	Not	the	final	result	

Overlapped	steps,	as	a	result	of	asynchrony	

Timeline	of	ApoA1	on	POWER7	PERCS	
230us	

13	

Simulating contagion over dynamic networks

EpiSimdemics1

Agent-based

Realistic population data

Intervention2

Co-evolving network,
behavior and policy2

transition by
interaction

S

I

Local transition

P1

P2

P3

P4

P = 1-exp(t·log(1-I·S))
- t: duration of

 co-presence

- I: infectivity

- S: susceptivity

infectious

uninfected

S

I

t

Location Social
contact
network L1

L2

1C. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSC09.

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 3 / 26

EpiSimdemics	

•  Original	in	MPI,	scaling	failed	at	512	cores	
•  Headline	features:	
– Asynchronous	reducCons	
– Easy	decomposiCon	experiments	
– Streaming	all-to-all	
– ComposiCon	-	split	mid-run	for	mulCple	scenarios,	
overlap	on	full	job	parCCon	

15	

Conversion	to	Charm++	

Load distribution (Vulcan)

RR GP
Z RR ZC GP

splitLoc splitLoc splitLoc splitLoc
(1.755 s) (1.583 s) (1.222 s) (0.438 s) (0.369 s) (0.368 s)

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

Blue: person computation

Red: receiver’s msg handling
Orange: location computation

X-axis: Time Y-axis: Processor

Timeline of an iteration from sampled subset of 332
cores of total 4K using Michigan data on Vulcan

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 24 / 2616	

17	

Strong scaling performance with the largest data set

 0.1

 1

 10

 100

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Si
m

ul
at

io
n

tim
e

pe
r d

ay
 (s

)

Number of core-modules

Strong Scaling (BlueWaters | XE6)

352K

RR-splitLoc, noBuf
RR, mbuf

RR-splitLoc, mbuf

 0.1

 1

 10

 100

1K 2K 4K 8K 16K 32K 64K 128K

Si
m

ul
at

io
n

tim
e

pe
r d

ay
 (s

)

Number of cores

Strong Scaling (Vulcan | BG/Q)

RR, mbuf
RR, TRAM

RR-splitLoc, mbuf
RR-splitLoc, noBuf
RR-splitLoc, TRAM

 0.1

 1

 10

 100

256 512 1K 2K 4K 8K 15K

Si
m

ul
at

io
n

tim
e

pe
r d

ay
 (s

)

Number of cores

Strong Scaling (Xeon, Infiniband)
RR-splitLoc Sierra, TRAM

Cab, TRAM
Shadowfax, mbuf

Contiguous US population data

XE6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 26 / 26

ChaNGa:	Cosmology	SimulaCon	

•  Tree:	Represents	
parCcle	distribuCon	

•  TreePiece:	object/
chares	containing	
parCcles	

CollaboraCon	with	
Tom	Quinn	at	UW	

MulCple	Cme-stepping!	

•  Our	scienCst	collaborators	suggest	an	algorithmic	
opCmizaCon:	
– Don’t	move	slow-moving	parCcles	every	step	

•  i.e.	don’t	calculate	forces	on	them	either	
–  In	fact,	make	many	(say	5)	categories	(rungs)	of	
parCcles	based	on	their	velociCes	

–  Rung	sequence	(with	5	rungs)		
•  4	3	4	2	4	3	4	1	4	3	4	2	4	3	4	0	
•  Rung	0:	all	parCcles,	Rung	4:	fastest-moving	parCcles	

–  Each	tree-piece	object	now	presents	a	different	load	
when	different	“rungs”	are	being	calculated	

MulCple	Cme-stepping!	
•  Load	(for	the	same	object)	changes	across	rungs	

–  Yet,	there	is	persistence	within	the	same	rung!	
–  So,	specialized	phase-aware	balancers	were	developed	

MulC-stepping	tradeoff	

•  Parallel	efficiency	is	lower,		
but	performance	is	much	be+er	

Single	Stepping	 MulC	Stepping	

Why	Charm++	
•  ApplicaCon	experience	

–  NAMD,	EpiSimdemics,	ChaNGa	
–  OpenAtom,	Fractography,	StochasCc	MIP,	Cloth	SimulaCon	

•  InteroperaCon	with	naCve	MPI	code	
–  Easy,	low	risk,	incremental	adopCon	

•  ProducCon-ready	development	
–  Portability	
–  Stability	
–  CompaCbility	

•  Rich,	Extensible	Ecosystem	
•  Comprehensive	feature	set	

MPI	Interoperability	

•  Make	calls	between	MPI	and	Charm++	code	
•  Implement	each	parallel	kernel	in	the	most	
suitable	model	

•  Code	shares	process	address	space	
– Can	pass	plain	pointers	across	interface	

•  Control	transfer	between	Charm++	and	MPI	
analogous	to	MPI	code	calling	external	
libraries	(e.g.	ParMETIS,	FFTW,	PETSc,	Hypre)	

MPI	Interoperability	Modes	

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

13Thursday, June 27, 13

(b) Space Sharing

...

P(1) P(2) P(N-1) P(N)

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

13Thursday, June 27, 13

(c) Combined Sharing

...

P(1) P(2) P(N-1) P(N)

(b) Space Sharing

...

P(1) P(2) P(N-1) P(N)

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

13Thursday, June 27, 13

MPI	Interoperability	Code	

•  Include	mpi-interoperate.h
•  Add	an	interface	funcCon	callable	from	the	
main	program	

14Thursday, June 27, 13

MPI	Interoperabilty:	Control	Flow	

•  Begin	execuCon	at	user	main	
•  Perform	MPI	iniCalizaCon	and	applicaCon	iniCalizaCon	
•  Create	a	communicator	for	Charm++	
•  IniCalize	Charm++	
•  for	(as	many	Cmes	needed)		

–  perform	MPI	based	communicaCon	and	applicaCon	work		
–  invoke	Charm++	code		

•  Exit	Charm++		
•  Exit	MPI	

MPI	Interoperability:	Example	Code	

16Thursday, June 27, 13

MPI	Interoperability:	Use	Cases	

•  Demonstrated	in	HPC	Challenge	submission	
with	FFT	benchmark		

•  Chombo	AMR	framework	using	parallel	
sorCng	library	from	
– Highly	Scalable	Parallel	SorCng	by	Edgar	
Solomonik	and	Laxmikant	Kale	(IPDPS,	2009)		

•  EpiSimdemics	using	MPI-IO	

Why	Charm++	
•  ApplicaCon	experience	

–  NAMD,	EpiSimdemics,	ChaNGa	
–  OpenAtom,	Fractography,	StochasCc	MIP,	Cloth	SimulaCon	

•  InteroperaCon	with	naCve	MPI	code	
–  Easy,	low	risk,	incremental	adopCon	

•  ProducCon-ready	development	
–  Portability	
–  Stability	
–  CompaCbility	

•  Rich,	Extensible	Ecosystem	
•  Comprehensive	feature	set	

Development:	Portability	

•  Compilers:	GNU,	Intel,	IBM,	Clang,	Cray,	PGI	
•  Network:	BlueGene	*,	Cray	*,	IB	Verbs,	TCP/IP	
•  CPU	Architectures:	x86,	POWER,	BG	*,	ARM	
•  OS:	Linux,	Mac,	Windows,	BG	*	

Development:	Stability	

•  Nightly	cross-plauorm	tesCng	
•  Thorough	test	coverage	
•  ConCnuous	IntegraCon	against	applicaCons	
•  Code	Review	of	every	commit	
•  RTS	runs	clean	under	Valgrind,	ASan,	&	UBSan	
•  SMP	build	is	mostly	ThreadSaniCzer	clean	

Development:	CompaCbility	

•  Frivolous	API	changes	avoided	
•  NAMD	always	tested	for	compaCbility,	
forward	and	backward	

Why	Charm++	
•  ApplicaCon	experience	

–  NAMD,	EpiSimdemics,	ChaNGa	
–  OpenAtom,	Fractography,	StochasCc	MIP,	Cloth	SimulaCon	

•  InteroperaCon	with	naCve	MPI	code	
–  Easy,	low	risk,	incremental	adopCon	

•  ProducCon-ready	development	
–  Portability	
–  Stability	
–  CompaCbility	

•  Rich,	Extensible	Ecosystem	
•  Comprehensive	feature	set	

Features	&	Ecosystem	
•  AutomaCc	offline	&	online	fault	tolerance	

–  Checkpoint	in	one	line,	transparent	restart,	any	number	of	processors	
–  Need	plauorms,	vendors	to	support	resilient	jobs!	

•  Plethora	of	LB	strategies	
–  Easy	to	plug	in	your	own	

•  Scalable	tools	
–  CharmDebug	parallel	debugger	
–  LiveViz	online	visualizaCon	client	
–  ProjecCons	performance	analysis	tool	

•  Resource	OpCmizaCons	
–  In-job	power	&	energy:	need	freedom	to	control	DVFS/RAPL	
–  Job	size	tuning	via	shrink/expand:	need	cooperaCve	scheduler	
–  Across-job	power	&	energy:	scheduling	with	power	constraints	

Why	Charm++	
•  ApplicaCon	experience	

–  NAMD,	ChaNGa,	EpiSimdemics	
–  OpenAtom,	Fractography,	StochasCc	MIP,	Cloth	SimulaCon	

•  InteroperaCon	with	naCve	MPI	code	
–  Easy,	low	risk,	incremental	adopCon	

•  ProducCon-ready	development	
–  Portability	
–  Stability	
–  CompaCbility	

•  Rich,	Extensible	Ecosystem	
•  Comprehensive	feature	set	

QuesCons?	

